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A new charged particle orbit following code HECTOR is described.
The code simulates the behavicur of thermal particles and high energy
particles, such as those resulting from the ICRF wave field interactions
or from thermonuclear reactions within the confining magnetic fields of
non-circular axisymmetric tokamak plasmas. The particle trajectories
are traced using a new, fast, and efficient hybrid orbit-foliowing
scheme, based upan the drift equations in the guiding centre
approximation and the constants of motion. The Monte Carlo techni-
que is used to describe the Coulomb scattering processes of dynamical
friction, pitch angle scattering, energy diffusion, and the ICRF inter-
action processes. The code is specifically designed to operate within
the experimental environment.  © 1993 Academic Press, Inc.

L INTRODUCTION

The operation of large tokamaks (JET, TFTR) with sub-
stantial levels of additional heating or close to ignition con-
ditions leads to the occurence of supra-thermal ion tails and
ol significant concentrations of fusion products within the
plasma volume. These charged particles have energies in the
million electron volt range, have long slowing down times
which are typically Is in systems close to ignition, have
large Larmor radii, and, especially for particles trapped in
the torcidal fieid gradients, make large radial excursions
across the minor cross section of the torus. Large banana-
width particles will lead to a significant broadening of the
heating profile and, in addition, can be produced on orbits
that intersect the vessel wall or enter the “loss cone” through
particle-wave interactions or through Coulomb scattering
on the background plasma, leading to increased impurity
production and wall loading. Furthermore, the escaping fast
ions can provide important information on the auxiliary
heating, efliciency and thermonuciear activity within the
discharge. A detaifed knowledge of the particle trajectorics
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isessential to the theoretical and experimental understanding
of tokamak systems close to ignition. The common use of
small banana-width approximations in these situations is
highly questionable and may lead to serious erroneous
results. An accurate description of the charged particle
behaviour is therefore of primary importance for reactor
feasibility studies and for diagnostic purposes.

A number of Monte Carlo codes or codes using the
constants of motion (COM) method have been developed
cither to classify the orbit topology or to follow the guiding
centres of charged particles moving in the magnetic ficld
of a iokamak or similar plasma containment devices
[1-167]. Many of the codes have only a limited number of
applications, particularly those which relate to present-day
experiments. The most severe problem, however, is that the
time scale to find the heating and diffusion rates is so
long that the numerical uncertainties often dominate any
perceived physics, or the demand for the computational
resources is so large that such codes are far too expensive for
routine use in the predictive or experimental environment,
1t is clear that there is a pressing need for a fast code which
can be used to address a number of important charged
particle problems. .

In this work we describe a procedure for tracing charged
particle orbits in noncircular tokamak containment
systems. The code was originally designed to study the
behaviour of fast ions residing in the tail of distributions
during heating in the ion cyclotron range of frequencies
(ICRF) or resulting from fusion reactions within the dis-
charge. However, many applications require an accurate
description of the thermal particle behavior, and accord-
ingly, a treatment of low energy particles is also included
in the code. The consideration is restricted to systems
exhibiting toroidal asisymmetry and includes the Coulomb
scatiering processes of dynamical friction, pitch.angle scat--
tering, and encrgy dilfusion due to collisions with the back-
ground electrons and ions, and the resonant ion interaction
with ICRF wave ficlds. A hybrid integration scheme based
upon the drift equations in the guiding centre approxima-
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tion and upon the COM method is used to follow the test
particles. In this numerical technique, the problem of error
accumulation is avoided. The invariance of the toroidal
canonical angular momentum enables arbitrarily large
integration steps to be used, and particle trajectories
obtained in this way remain close to the actual orbit
throughout the integration.

The structure of this work is as follows. In Section 11, the
methods for the investigation of charged particle behaviour
in the confining magnetic field of a tokamak plasma are
reviewed and their areas of application discussed. In
Section III, the Monte Carlo model operators describing
the Coulomb collision and ICRF interaction processes are
presented. Then, in Section IV the procedure for mapping
the charged particle source distribution from the local phase
space coordinates to the COM system is described, and in
Section V, the code input data specification and modes of
operation are detailed. Finally, the test results are presented
in Section VI.

IL METHODS FOR THE INVESTIGATION OF
CHARGED PARTICLE TRAJECTORIES

In this section we first review current methods and
areas of application for tracking charged particles in
tokamak containment systems. Then a new method based
upon the drift equations in the guiding centre approxi-
mation and the constants of motion is described. The
coordinate system used is shown in Fig. L.

(1) Full Orbit Calculation

The full equation of motion for charged particles is
mv=g(E+vxB),
where m is the particle mass, v is the particle velocity, g is the

particle charge, and E, B are the electric and magnetic fields,
respectively.
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FIG. 1. (R, ¢, Z)-coordinate system.

S81/105/1-2

The advantage of using the exact equation is its accuracy
in describing the orbits. However, calculations of this type,
besides having numerical error accumulation, are time con-
suming and not well suited to simulation studies, where a
large number of particle trajectories are to be examined.
Consequently, the full orbit representation is limited to
situations where detailed information on the actual
gyromotion is required, such as for orbits of heavy ions with
low charge state.

(ii) Guiding Centre Approximation

The velocity components of the guiding centre motion are
readily obtained from the collisionless drift equations. We
have

Voo =vpb—0,bxV (f}l),

el

where the component of the guiding centre velocity
projected along the magnetic field line is o=
+[2(E— uB/m]'?, b=B/|Bl is the unit vector in the direc-
tion of the magnetic field, w, ;= gB8/m is the ion cyclotron
frequency, E=3mv? is the particle energy, u=%mv’ /B is
the magnetic moment, and v, v, are the magnitude and per-
pendicular component of the particle velocity, respectively.

Whatever numerical integration method is used for the
guiding centre equation there are two severe problems. The
first is the accumulative numerical error which limits the
integration step length to 10-20 times the step length used
with full orbit calculations. To be able to simulate
thousands of slowing down orbits, a greatly enhanced
numerical acceleration (> 107) of the slowing down pro-
cesses must be introduced leading to a distorted orbit topol-
ogy. The effect of numerical error accumulation on a typical
orbit is shown in Fig. 2. It is to be noted that the error in the
flux coordinate appears to grow almost linearly with the
integrated orbit. The second problem is the turning point
where v, changes sign. To implement a long integration step
procedure the calculation of the actual coordinates of the
orbit turning point, where v, = 0, can require a considerable
investment in interpolation and, consequently, a significant
fraction of the computational time. In the following section,
a method of orbit integration is described which surmounts
these difficulties.

(iii) Drift Equation and Constants of Motion
Approximation Hybrid Method

In the absence of interacting processes three constants of
motion, the particle velocity v, magnetic moment g, and
toroidal canonical angular momentum P, completely
characterise the guiding centie motion of charged particles
moving within the confining magnetic fields of a axi-
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FIG. 2. Elfect of the accumulative numerical error on a collisionless
a-particle orbit calculated using the guiding centre approximation.

symmetric tokamak. In systems having arbitrary cross
section [17]

where B=(B%+ B+ B3)', and i is the poloidal flux
function.

If a simple formula for i 1s used, the spatial coordinates
of the charged particles can easily be solved. This, however,
represents only a small minority of cases relevant to present-
day tokamaks. In the general situation ¥ is obtained either
as a numerical solution of the Grad—Shafranov equation for
plasma equilibria or as a fit to the experimental magnetic
measurements. Thus, an alternative method to find the spa-
tial coordinates has to be used. This is usually done by writ-
ing the set of (P, p, v) invariants as a function of R and
and by assuming B= B, [16]. The (R, Z) coordinates can
then be obtained by a one-dimensional interpolation of .
The resulting orbit error, when compared with the case
where the poloidal magnetic field component B, is included,
is small if the plasma current is low [18] but will become
significant for discharge currents in the present large
tokamaks currently operating (JET, TFTR) or in future
igniting tokamaks.

To include B, the interpolation has to be done in a two-
dimensional (R, ¢) space. This is done in HECTOR with a
hybrid integration technique which combines the drift equa-
tions and the COM method. First, a long single guiding
centre step is taken to give predicted spatial coordinates

{R, Z),.- Then, coordinates (R, Z), are chosen perpen-
dicular to the ling between the predicted and previous
orbit coordinates. The actuval coordinates that satisfy
P,=constant can then be easily found by linear interpola-
tion between (R, Z),. and (R, Z),. An example of a first
orbit obtained with this method is shown in Fig. 3. The drift
equation gives the optimum predicted spatial coordinates
and, consequently, increases the overall efficiency of the
integration procedure. The sign of v, is automatically
included in the integration, and numerical error accumula-
tion and the problem of locating the spatial coordinates of
the turning points are avoided.

The location on the orbit, where the particle undergoes
the ICRF interaction is determined from the resonance
condition

m
=—{w—k,u)),
hq

where w is the frequency of the wave field, k|, is the parallel
wave number, and # is an integer. After the particle has
crossed this value of magnetic field, the spatial coordinates
are corrected to take into account the resonance duration
time and the subsequent changes in the (P, i, v) coor-
dinates using the ICRF model operator, which is described
in Section IIL

Z{m)
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FIG. 3. Typical collisionless 3.5 MeV g.particle orbit traced using
long (4 m) integration steps with the hybrid method. It is seen that even
with this large integration step the orbit remains closed.
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The integration step length is in the usual form

4 B
At=—5|:l+ay(2—2)}.
v my

Goldston et al. [10] used a¢=1.5, but to increase the
accuracy of the orbits of deeply trapped particles a =1.0 is
chosen here. This is particularly important for the simula-
tion of anisotropic minority ion distributions produced
during ion cyclotron resonance heating (ICRH). 1t is to be
noted, that for a given pitch angle the spatial integration
steps do not depend on the particle energy. Furthermore,
the poloidal steps become shorter when the cosine of the
pitch angle or the poloidal field value decreases. Thus, a
constant number of integration steps per bounce orbit can
be roughly maintained independent of the particle energy,
pitch angle, or radial position. For such calculations as
ICRH, the decrease in the poloidal step length for particles
moving close ta the plasma cenire leads to improved
accuracy. Typically the step-size As is 1-2m. Because of the
increase in the poloidal step length as the particle moves
through the outer region of the plasma, As is reduced to
~0.5 m to obtain accurate results for the heat and particle
distributions on the wall. This is particularly important for
studies of flows in the X-point region.

Computing particle trajectories is time consuming, but
the use of the hybrid method can reducc this time
significantly. As a specific example, to obtain a ~1% error
in the radial coordinates of a collisionless 3.52 MeV x-par-
ticle orbit after a Spitzer time, the step length using the
Runge-Kutta method [197] has to be in the region of three
orders of magnitude shorter than that used in the hybrid
scheme. Although the interpolation in the hybrid method
involves a considerable computation time, this method can
still reduce the CPU time by a factor of >25 When the
collisions are included the optimising of the CPU time
depends, further, on the efficiency of the scattering
operators (Section {11}, on the way the scattering processes
are accelerated (Section IIT), and on the speed of the data
handling routines which provide local plasma parameters
along the trajectory (Section V). To calculate the a-particle
slowing down orbits from the initial energy of 3.52 MeV to
the thermal energy takes typically ~ 100 h/1000 particles on
the CRAY computer. To reduce this large CPU time a
number of fast orbit following codes have recently been
developed, such as that in Ref. [20] which achieved a speed
up factor of ~20. To obtain a significant reduction in the
CPU time, approximations have to be used. This limits the
range of application and in many cases can lead to serious
departure from the actval physics under investigation, This
is avoided by using the hybrid orbit integration technique
combined with efficient routines for scattering, acceleration,
and data handling, and a substantial saving in CPU time is

gained. A simulation of 2000 «-particle slowing down orbits
with HECTOR takes 10-15min on the IBM-3090-300]
computer, and creating an energetic tail in the minority ion
distribution function from an initially thermal population
with ICRH takes ~ 20 min/2000 particles.

Extensive tests, which are described later in Section VI,
demonstrate the validity of the code. Although the hybrid
method can only be applied to tokamaks with toroidal
magnetic axisymmetry, the ripple amplitude in the current
large tokamaks is small and can be neglected.

IIL, SLOWING DOWN AND ICRF-INTERACTION
PROCEDURE

The inclusion of the effects of Coulomb scattering
and ICRF interaction on the particle trajectories 1s
straightforward and conceptually simple. Collisions are
taken into account by calculating new values of the particle
velocity, magnetic moment, and toroidal canonical angular
momentum after each time step. We have

v—ov+ A
u—p+Ap

where

m
Au=> (20 dv + Av> =20, dv) — Av}]}

and

AP,=mRB, Av,/B

are the incremental changes in the magnetic moment (du)
and toroidal canonical angular momentum (4F;} due to
the accumulative effects of dynamical friction, pitch angle
scattering, energy diffusion, and particle wave interaction
occurring during the time step. Av and Av) are the
incremental changes in particle velocity and its parallel
component, respectively. The usual inclusion of only the
first-order terms in Au leads to accumulative error in g and,
consequently, to a loss of energy conservation. This is
avoided here by the use of the second-order differentials
in Ay,

(1) Friction

Following the analytical treatment of the Fokker-Planck
equation by Stix [21], one can write the change in particle
velocity occurring during a time interval Az as

Ao= };(cffﬂc(zfv) At),
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where
C,=8mnn, Z}Z%" In Ajm*
17=m/(2kT))
_#0x) — x¢'(x)

2x?

G(x)

2 x _2
$x)=—5 | e dy

and the subscript f designates the background ficld
particles, ions, and electrons. The change in the parallel
velocity due to this change in velocity Av is then

dv = ¢ Av,
where £ 1s the pitch, the cosine of the pitch angle,

(i1} Pitch Angle and Energy Scattering

The change in the paraliel velocity due to the pitch angle
and energy scattering during 4t is

Ao =v AL+ ¢ Av,

The changes in the pitch and particle velocity given by
Boozer and Kuo-Petravic [22] are

AE= v At E+8,[{(1 ~ &) v d:]V?

2 1/2
Av=[vl+—AE:| —,
m
where

3 Edvg
AE= -2y At| E—(=+—==£
R PR LY
+8,[4TE(ve 41)]1"2
Both &, and 3, are +! with equal probabilities, T is the

background Maxwellian temperature, and the Spitzer
collision frequencies [23] are

1
V=5 Y Coléll,0)— Gl )]
vt

V= —15 Y [C, G )]
v

(iii} ICRF Interaction

Each time the ion passes through the ion cyclotron
resonance layer and undergoes resonant interaction with

the wave field there is a random change in the perpendicular
component of the particle velocity. To take into account this
incremental change we use a method based upon the
simplified treatment of Stix [21],

s X k
Ao, =37 |E | et g(Z) e [J,,ﬂt ( l”l)
\

E_ k, v
+EJ"+]( ;;)] (1 =k /),

ci

where E is the electric field strength with + and — desig-
nating the polarized left- and right-handed components,
respectively, L is the electric field profile parameter, Z is the
distance from the median plane in the vertical direction, and
g{(Z} is a function which is used to provide a flat power
absorption profile when L =0. J, is the usual Bessel func-
tion of order »; k  and k|, are the perpendicuilar and parallel
wave numbers, respectively, o is the radio frequency, and
the phase angle is

o =2nrd,

where &, is a uniformly distributed random number between
0 and 1. For the passing and weakly trapped particles the
resonance duration time 7 is

ol

and when the orbit turning point is on or near the resonance
layer we take

BNV
r:(Zﬂ/l:Zj?u(g)] )Af(o),

where A, is the Airy function, and s is the distance along the
particle irajectory. The ICRF induced diffusion is taken into
account by calculating the change in the paraliel velocity
component [21]

k
Av”=—0;|«-vL v,

ol

which in addition leads to spatial diffusion [24, 25]. The.
change in the particle velocity is then obtained from
dv=[v*+2|dv | v, cosa+2v, dv,
-'r' SAUJJE + (AUH)ZJUZ — .

(iv) Acceleration of Scartering Processes

To achieve acceptable computing time an enhanced
acceleration of the slowing down and scattering processes
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has to be introduced. Goldston et al. coupled the accelera-
tion to the change in pitch (A& with a predetermined
acceleration constant G [10]. The acceleration was reduced
by a factor of 2 when the change in pitch is above the upper
limit & and increased by the same factor below the lower
imit 0.52G To improve statistics in HECTOR the
increase/decrease factor of 1.25 and the lower limit of 0.5G
are used. Typically G can be 0.05-0.08, but higher values
will lead to increased scattering losses due to enhanced
change from passing orbits to trapped ones.

When velocity increases the reduction in the scattering
frequency occurs at a faster rate than that in the timestep
At~ Asfv. Thus, to prevent an excessive growth in accelera-
tion, which would lead to a distorted slowing down and tail
formation during ICRH, an upper limit for the acceleration
is required. A fixed value upper limit is not efficient in
view of CPU time, and thus, a scaling factor (v/v,)'? is
added during slowing down calculations. When the ICRH is
on, to improve the statistics near the axis where the par-
ticle—wave field is the strongest, the acceleration is, in addi-
tion, scaled with [ 1 + a{l —e~2%)]. Typically acceleration
of the order of 20 and the constant a value of 2 are used. To
reduce the large computation time spent on the thermal
population further, a cutoff energy of 10 *7,(0) is adopted.

1V. CALCULATIONS OF SOURCE FUNCTION
AND PLASMA QUANTITIES

The application of direct sampling methods to the
problem of particle selection from the distribution of
sources in the local phase space coordinates leads to orbit
duplication, and many repetitions of the same equivalent
particle occurs. Consequently, a very large number of
particles will have to be traced to obtain good statistical
accuracy. To circumvent this difficulty, we note that particles
produced in different regions of phase space are simply con-
nected through unique sets of (P=P,, u, v} coordinates.
Each set is common to all particles born along a particular
orbit and can be represented by a single test particle. The
point on the path at which the test particle is initially
located is usually taken to be the median plane of the torus
but is otherwise quite arbitrary. In this way, a transforma-
tion to the COM phase space will lead to a significant
reduction in the number of charged particles that have to be
tracked to ensure that sampling errors are minimised. It is
to be noted that the reduction in the number of test particles
does not only apply to orbits where the drag term
dominates but aiso to those of ICRF heated particies. The
history of a particular particle during ICRH follows the
same pattern from thermal to strongly anisotropic with a
high tail temperature, leading to diffusion out of the plasma
centre and, after cooling, returning due to diffusion back
into the centre for reheating. The orbit integrated source

function in the local velocity space variables (R, Z, v, £) is
transferred to the COM system (P, 4, v}, where the local
source strength is given by

S=4n? jm S(R, Z, v, &) R dR dZ v* dv dZ,

For charged particles resulting from thermonuclear
reactions within the plasma the local source function takes
the form

1,1, o0 )

S(R, Z, v, f) - IS[U - ),
dnv} ¢

where {ov) is the thermonuclear reactivity, v, is the birth
velocity, and the particles are assumed to be born isotropi-
cally in velocity space. The local birth rate of fast neutral
beam particles is described with

h= (rio_ r]e)(l _xa)b+ rie:

where the subscripts (o, e) refer to the values on the
magnetic axis and at the plasma edge, respectively, and
(a, b) are the profile parameters. The initial pitch of the
beam particles is assumed to have a narrow Gaussian dis-
tribution and is related to the magnetic field configuration
and the beam line geometry.

The distribution function for the test particle species can
be constructed by integrating over the local phase space
coordinates along the orbits and by weighting the particle
flights with the appropriate source terms. However, quan-
tities of interest, such as the rates of the background heating
and ICRF power absorption, and thermonuclear vields, can
be obtained directly from the orbit integration and do not
require a detailed knowledge of the test particle distribution
function. Thermonuciear yields are calculated by integrat-
ing the hot target reactivity {gv), [26], and the burnup
fraction is then

_zk Nu&[l _T[(l - (gv>hn‘dt)i]
p; ZkNok ’

where N, 1s the number of test particies, and n is the target
density. Index i refers to the integration steps along the
orbit,

V. INPUT DATA

Tracing charged particles requires a continuous supply of
local values of magnetic field and bulk plasma parameters
along the particle trajectory, Two equidistant (but not
limited to) spatial grids are used to facilitate an easy access
to these values.
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The radial density and temperature profiles of the plasma
electrons, primary ions, and impurity ions, and the
calculated profiles of thermonuclear reactivities and other
cross secttons of interest are stored in 51 grid points. The
values of the magnetic field components B,, B;, B,
magnitude of the field |B], flux coordinate p, poloidat flux
function ., and reference coordinates of the 1D grid are
precaleulated and stored in a 2D grid spanning the entire
poloidal cross section of the torus. To obtain particular
values and to reduce the computational time still further
and, {urthermore, to avoid a recourse to interpolation, we
employ a simple “look-up” table procedure. Unfortunately,
this procedure demands a fine grid, resulting in a con-
siderable increase in storage requirements. However, a
(200 x 299) grid was found to give acceptable results. The
input data can be divided into two categories, depending on
whether model or arbitrary values and profiles (model input
data) or data from JET discharges (JET shot input data)
are used.

(1Y Model Input Data

In this mode the code can be used with a wide variety
of input parameters appropriate to other tokamaks
addition to JET. The model profiles for the electron and ion
densities and temperatures are

np=(n,—n (1 —x*) +n,

T=(T, =T =XV + T, j=(e)
The constants a, b, and ¢ are the usuval profile parameters.
Furthermore, arbitrary profiles can be created with separate
input data points.

The toroidal component of the magnetic field is
calculated from

Bci = B()‘Re/Rﬁ

where B, is the toroidal magnetic ficid at R=R,.
The poloidal magnetic field B, is derived from the
Lao-Hirshman solution of the Grad-Shafranov equation

for the plasma equilibria and assumes an analytical
representation for the plasma current and pressure
profiles [27]. The model has been corrected to satisfy
V.B =0 [26]. Both symmetric and non-symmetric plasma
cross sections can be included. The input parameters for the
B, calculations are: plasma current, current profile
constant, beta-/, elongation, internal inductance, and minor
radius. In the hybrid method the value of the poloidal flux
¥ is required, and this is obtained by integrating over the
median plane the equation

oy

o= BiR

(ii) JET Shot Input Data

To obtain the poloidal flux function  the code IDENTC
is used [287]. The code solves the Grad-Shafranov equation
for plasma equilibria assuming an analyiical representation
of the current and pressure profiles and using free
parameters to fit the data from the magnetic measurements.
The cutput is a normalized 4 between ¢ and 1.

The FLUSH routine package [29] is then used to
calculate the actual values of ¥, and the poloidal magnetic
field components B, and B_ at given coordinates.

Routine PREGER [30] is used to extract data, such as
n,, T, profiles, from JET shot data banks. Densities for
the primary and impurity tons are then calculated using
the CPRIOQ routine [30], which employs the coronal
equilibrium model. The local birth rate of the fast neutral
beam particles can be included by fitting the data from the
PENCIL code [317.

VL. TEST RESULTS

An extensive program of tests was carried out to assess
the reliability and accuracy of HECTOR. The comparison
with the SOCRATE code [ 167, which combines the single
orbit approximation with the classical energy loss formula,
showed a very good agreement in the orbit topology, the
source raie, the slowing down rate, and the triton burnup
{Table I) [19].

TABLE 1
Triton Burn up and Confined Particle Fraction Calculated with HECTOR and SOCRATE Codes

Shot: 10583 Shot: 10952
Flat profile Peaked profile Flat profile Peaked profile
HECTOR SOCRATE HECTOR SOCRATE HECTOR SOCRATE HECTOR SOCRATE
p(%) 0.50 0.50 074 0.79 129 1.3} 1.54 1.62
FL%) 50 49 93 94 70 69 100 100
Note. The effects of pitch anple scattering and energy diffusion are not included.
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FIG. 4. Pariicle relaxation in pitch space. A single, thermal £ = T, *He
ion was followed with the pitch angle scattering operator in deuterium
plasma. The particle started with an initial pitch &=00, and after
1.5 Spitzer time isotropic pitch distribution was oblained.
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FIG. 6. Comparison of the mean energy calculated with the Fokker-
Planck and HECTOR codes. The parameters for the calculation are

N ,=S5MA, B,=34T, I,=8keV,n,=5x10"m™> and Zq4=12.
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FIG. 7. Comparison of the electron and background fon heating rates
calculated with the Fokker-Planck and HECTOR codes. In case A the
effect of the particle losses out of the plasma is not included, but in case B
it is. The parameters for the calculation are I, =35MdA, B,=34T,
T,=8keV,n,=5%10" m~?, and Zy=1.2.

FIG. 5. Particlc relaxation in energy space. A *He ion was followed
with the energy scaitering operator in deuterium plasma. The initial energy
was £= T. A Maxwellian distribution, represented with the straight line, is
reached after 2.5 Spritzer time. A cutoff energy of E = 10~*T was used.
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FIG. 8. Comparison of the (*He, d) yield calculated with the Fokker—
Planck and HECTOR codes. Flat plasma and [CRF wave field provides
were used to eliminate the finite orbit effecis in HECTOR, The parameters
for the calculation are [, = 5MA, B, =347, T, =8keV, n,=5x 10" m™?,
and Zg=12

The spread in pitch for a single thermal *He-particle
behaved as expected and in the JET deuterium plasma
reached a uniform distribution after several collision times
(Fig. 4). Furthermore, the diffusion coefficient and the con-
sequent particle losses were within 10% of the neoclassical
values. Separate tests of the energy diffusion operator
showed that the energy relaxation of a thermal *He-particle
reached the Maxwellian distribution in a time scale that was
longer than that for the pitch relaxation (Fig. 5).

The validity of the ICRF interaction model was tested by
comparing 1t with a semi-analytical model [32] which 1s
in good agreement with the bounced-averaged Fokker-
Pianck ion cycletron code BAFIC [33]. To ¢liminate the
finite orbit effects in the results, flat profiles for the [CRF
wave ficlds and plasma parameters were used. The minority
ion energy content, mean energy (Fig. 6), energy trans-
ferred to background clectrons and ions (Fig. 7), and the
fuston yield (Fig. 8) are in good agreement (within 10%),
when particle losses are taken into account.

VII. CONCLUDING REMARKS

The new numerical technigue for integrating the charged
particle orbits, together with a fine 2D spatial grid and its

“corresponding 1D grid for easy data handling, have reduced

the computation time for each particle flight. Introducing
the orbit integrated source rate has reduced significantly the
number of particle orbits that have to be traced. A simula-
tion following 2000 test particles for a Spitzer time takes,
depending on the application, 10-20 min CPU time on the
IBM-3090-300) computer. The time evolution of the plasma
parameters can be taken into account but this will increase
the CPU time and space requirement. In most applications
the assumption of the steady state plasma is sufficient.
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